

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18892

1.5.2 CÁLCULOS REALIZADOS MEDIANTE PROGRAMAS INFORMÁTICOS

Cuando en el proyecto se incluyan resultados de programas informáticos relacionados con la estimación de avenidas, caudales, zonas de inundación, velocidades, calados, erosiones, evaluación de estabilidad de las obras, o bien cualesquiera otros relacionados con el objeto de esta norma, debe proporcionarse al menos la siguiente documentación:

- Descripción del problema objeto de estudio
- Definición y justificación del tipo de cálculo, modelo y programa informático con el que se acomete su resolución
- Denominación completa del programa y versión que se utiliza
- Establecimiento y justificación de las condiciones de contorno adoptadas
- Definición y justificación de los parámetros hidráulicos, geotécnicos, estructurales y de cualquier otro tipo que intervengan en el cálculo. Independientemente de que dichos valores puedan aparecer en los listados del programa, deben incluirse en un documento monográfico presentado aparte
- Memoria completa de cálculo con inclusión de listados en su caso
- Discusión de los resultados por comparación con procedimientos de cálculo simplificados obtenidos de manera manual.
- Resultados obtenidos, con expresión de magnitudes y sus unidades de medida

Con carácter general, debe realizarse un análisis de sensibilidad que evalúe la influencia de pequeñas variaciones de los parámetros de cálculo en los resultados que se obtengan.

CAPÍTULO 2. CÁLCULO DE CAUDALES

2.1 Consideraciones generales

El caudal máximo anual correspondiente a un determinado período de retorno Q_T , se debe determinar a partir de la información sobre caudales máximos que proporcione la Administración Hidráulica competente. En caso de no disponer de dicha información, se debe calcular a través de la metodología que se establece en este capítulo.

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18893

A los efectos de esta norma se consideran los siguientes métodos de cálculo de caudales:

- Racional: Supone la generación de escorrentía en una determinada cuenca a partir de una intensidad de precipitación uniforme en el tiempo, sobre toda su superficie. No tiene en cuenta:
 - Aportación de caudales procedentes de otras cuencas o trasvases a ellas.
 - Existencia de sumideros, aportaciones o vertidos puntuales, singulares o accidentales de cualquier clase.
 - Presencia de lagos, embalses o planas inundables que puedan producir efecto laminador o desviar caudales hacia otras cuencas.
 - o Aportaciones procedentes del deshielo de la nieve u otros meteoros.
 - Caudales que afloren en puntos interiores de la cuenca derivados de su régimen hidrogeológico.

Cuando se aplique el método racional se debe comprobar que ninguno de estos factores pueda resultar relevante. Este método se desarrolla en el apartado 2.2.

- Estadístico: Se basa en el análisis de series de datos de caudal medidos en estaciones de aforo u otros puntos. Dichas series se pueden complementar con datos sobre avenidas históricas.
- Otros métodos hidrológicos: que deben ser adecuados a las características de cada cuenca.

La elección del método de cálculo más adecuado a cada caso concreto debe seguir el siguiente procedimiento:

- En cuencas de área inferior a cincuenta kilómetros cuadrados (A < 50 km²):
 - Utilización de datos sobre caudales máximos proporcionados por la Administración Hidráulica.
 - Si la Administración Hidráulica no dispone de datos sobre caudales máximos se debe aplicar el método racional, con las particularidades del apartado 2.3 cuando las obras se ubiquen en el Levante y Sureste peninsular.

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18894

- En cuencas de área superior o igual a cincuenta kilómetros cuadrados (A ≥ 50 km²):
 - Utilización de datos sobre caudales máximos proporcionados por la Administración Hidráulica.
 - Si la Administración Hidráulica no dispone de datos sobre caudales máximos:
 - Cuando existan estaciones de aforo próximas, que se consideren suficientemente representativas, se utilizará el método estadístico.
 - Cuando los caudales no puedan estimarse a partir de estaciones de aforo, se deben aplicar métodos hidrológicos adecuados a las características de la cuenca, que se deben contrastar con la información de que se disponga sobre caudales de avenida. En la realización de estos estudios se tendrá en cuenta la información disponible sobre avenidas históricas o grandes eventos de precipitación.

La figura 2.1 recoge un diagrama de flujo para la elección del método de cálculo más adecuado a cada caso concreto.

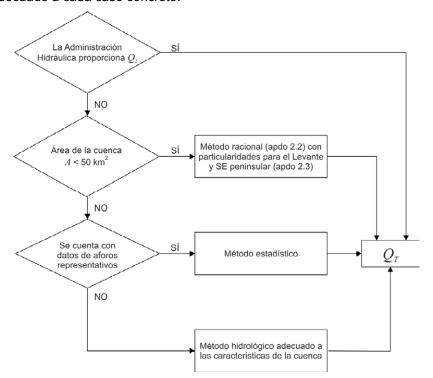


FIGURA 2.1.- DIAGRAMA DE FLUJO PARA LA ELECCIÓN DEL MÉTODO DE CÁLCULO DE CAUDALES

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18895

2.2 Método racional

2.2.1 FÓRMULA GENERAL DE CÁLCULO

Siguiendo el método racional, el caudal máximo anual Q_T , correspondiente a un período de retorno T, se calcula mediante la fórmula:

$$Q_T = \frac{I(T, t_c) \cdot C \cdot A \cdot K_t}{3.6}$$

donde:

 Q_T (m³/s) Caudal máximo anual correspondiente al período de retorno T, en el punto de desagüe de la cuenca (figura 2.2).

 $I(T, t_c)$ (mm/h) Intensidad de precipitación (epígrafe 2.2.2) correspondiente al período de retorno considerado T, para una duración del aguacero igual al tiempo de concentración t_c , de la cuenca.

C (adimensional) Coeficiente medio de escorrentía (epígrafe 2.2.3) de la cuenca o superficie considerada.

A (km²) Área de la cuenca o superficie considerada (epígrafe 2.2.4).

 K_t (adimensional) Coeficiente de uniformidad en la distribución temporal de la precipitación (epígrafe 2.2.5).

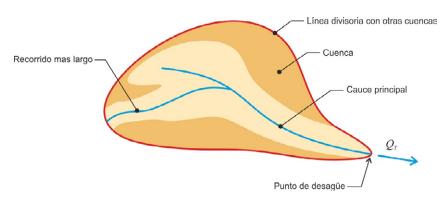


FIGURA 2.2.- ESQUEMA DE CUENCA

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18896

La fórmula anterior es válida para cuencas homogéneas. En el epígrafe 2.2.4 se generaliza para cuencas heterogéneas.

Cuando las obras se ubiquen en el Levante y Sureste peninsular, se debe proceder según se especifica en el apartado 2.3.

En cualquier caso, e independientemente de la zona geográfica en la que se encuentren las obras, siempre que existan datos sobre caudales o referencias sobre inundaciones históricas se deben contrastar con los resultados obtenidos.

2.2.2 INTENSIDAD DE PRECIPITACIÓN

2.2.2.1 Consideraciones generales

La intensidad de precipitación I(T, t) correspondiente a un período de retorno T, y a una duración del aguacero t, a emplear en la estimación de caudales por el método racional, se obtendrá por medio de la siguiente fórmula:

$$I(T, t) = I_d \cdot F_{int}$$

donde:

I(T, t)	(mm/h)	Intensidad de precipitación correspondiente a un					
		período de	retorno T	'y a una	dura	ción del aç	gua-
		cero t.					
I_d	(mm/h)	Intensidad	media	diaria	de	precipita	ción
		corregida	correspo	ondiente	al	período	de
		retorno T (e	epígrafe 2	.2.2.2).			
F_{int}	(adimensional)	Factor de i	ntensidad	(epígraf	e 2.2	.2.4).	

La intensidad de precipitación a considerar en el cálculo del caudal máximo anual para el período de retorno T, en el punto de desagüe de la cuenca Q_T , es la que corresponde a una duración del aguacero igual al tiempo de concentración $(t = t_c)$ de dicha cuenca (epígrafe 2.2.2.5).

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18897

2.2.2.2 Intensidad media diaria de precipitación corregida

La intensidad media diaria de precipitación corregida correspondiente al período de retorno *T*, se obtiene mediante la fórmula

$$I_d = \frac{P_d \cdot K_A}{24}$$

donde:

 I_d (mm/h) Intensidad media diaria de precipitación corregida correspondiente al período de retorno T P_d (mm) Precipitación diaria correspondiente al período de retorno T K_A (adimensional) Factor reductor de la precipitación por área de la cuenca (epígrafe 2.2.2.3).

Para la determinación de la precipitación diaria correspondiente al período de retorno T, P_d , se debe adoptar el mayor valor de los obtenidos a partir de:

- Datos publicados por la Dirección General de Carreteras.
- Estudio estadístico de las series de precipitaciones diarias máximas anuales, medidas en los pluviómetros existentes en la cuenca, o próximos a ella. Se debe ajustar a la serie de precipitaciones máximas registrada en cada pluviómetro, la función de distribución extremal más apropiada a los datos de la zona, considerando al menos las funciones Gumbel y SQRT ET-max.

A los efectos de esta norma, para la aplicación del método racional se toma como precipitación diaria P_{d_i} la correspondiente al valor medio en la superficie de la cuenca (media areal), que se obtiene mediante la interpolación espacial de los valores obtenidos en cada uno de los pluviómetros considerados.

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18898

2.2.2.3 Factor reductor de la precipitación por área de la cuenca

El factor reductor de la precipitación por área de la cuenca K_A , tiene en cuenta la no simultaneidad de la lluvia en toda su superficie. Se obtiene a partir de la siguiente formula:

Si
$$A < 1 \text{ km}^2$$
 $K_A = 1$
Si $A \ge 1 \text{ km}^2$ $K_A = 1 - \frac{\log_{10} A}{15}$

donde:

K_A (adimensional) Factor reductor de la precipitación por área de la cuenca

A (km²) Área de la cuenca (epígrafe 2.2.4).

2.2.2.4 Factor de intensidad F_{int}

El factor de intensidad introduce la torrencialidad de la lluvia en el área de estudio y depende de:

- La duración del aguacero t
- El período de retorno T, si se dispone de curvas intensidad duración frecuencia (IDF) aceptadas por la Dirección General de Carreteras, en un pluviógrafo situado en el entorno de la zona de estudio que pueda considerarse representativo de su comportamiento.

Se tomará el mayor valor de los obtenidos de entre los que se indican a continuación:

$$F_{int} = m\acute{a}x (F_a, F_b)$$

donde:

 F_{int} (adimensional) Factor de intensidad

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18899

- F_a (adimensional) Factor obtenido a partir del índice de torrencialidad (I_1/I_d)
- F_b (adimensional) Factor obtenido a partir de las curvas IDF de un pluviógrafo próximo.

a) Obtención de F_a

$$F_a = \left(\frac{I_1}{I_d}\right)^{3,5287 - 2,5287 t^{0,1}}$$

donde:

 F_a (adimensional) Factor obtenido a partir del índice de torrencialidad (I_1/I_d). Se representa en la figura 2.3.

 I_{I}/I_{d} (adimensional) Índice de torrencialidad que expresa la relación entre la intensidad de precipitación horaria y la media diaria corregida. Su valor se determina en función de la zona geográfica, a partir del mapa de la figura 2.4.

t (horas) Duración del aguacero.

Para la obtención del factor F_a , se debe particularizar la expresión para un tiempo de duración del aguacero igual al tiempo de concentración ($t = t_c$).

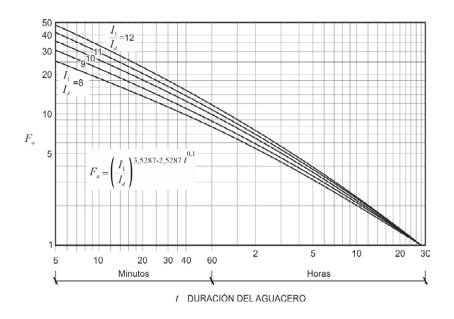


FIGURA 2.3.- FACTOR F_a

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18900

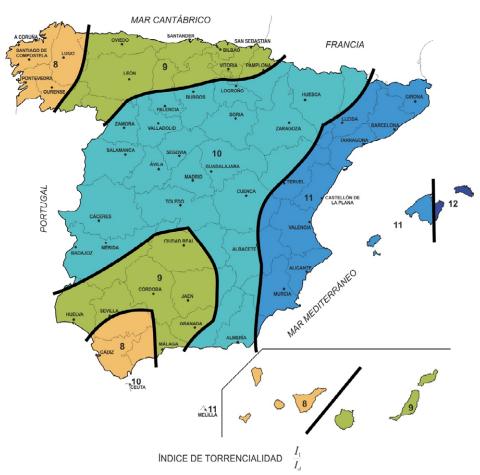


FIGURA 2.4.- MAPA DEL ÍNDICE DE TORRENCIALIDAD (I₁/I_d)

b) Obtención de F_b

$$F_b = k_b \frac{I_{IDF}(T, t_c)}{I_{IDF}(T, 24)}$$

donde:

F_b	(adimensional)	Factor obtenido a partir de las curvas IDF de un
		pluviógrafo próximo
$I_{IDF}(T,t_c)$	(mm/h)	Intensidad de precipitación correspondiente al
		período de retorno T y al tiempo de concentra-
		ción $\it t_c$, obtenido a través de las curvas IDF del
		pluviógrafo (figura 2.5).
$I_{IDF}(T,24)$	(mm/h)	Intensidad de precipitación correspondiente al
		período de retorno $T\mathrm{y}$ a un tiempo de aguacero

igual a veinticuatro horas (t = 24 h), obtenido a

través de curvas IDF (figura 2.5).

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 189

 k_b (adimensional) Factor que tiene en cuenta la relación entre la intensidad máxima anual en un período de veinticuatro horas y la intensidad máxima anual diaria. En defecto de un cálculo específico se puede tomar $k_b=1,13$

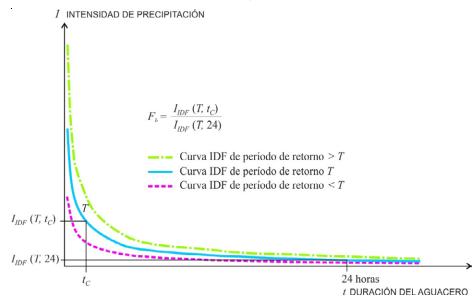


FIGURA 2.5.- OBTENCIÓN DEL FACTOR F_b

2.2.2.5 Tiempo de concentración

Tiempo de concentración t_c , es el tiempo mínimo necesario desde el comienzo del aguacero para que toda la superficie de la cuenca esté aportando escorrentía en el punto de desagüe. Se obtiene calculando el tiempo de recorrido más largo desde cualquier punto de la cuenca hasta el punto de desagüe, mediante las siguientes formulaciones:

Para cuencas principales (apartado 1.4):

$$t_c = 0.3 \cdot L_c^{0.76} \cdot J_c^{-0.19}$$

donde:

 t_c (horas) Tiempo de concentración L_c (km) Longitud del cauce J_c (adimensional) Pendiente media del cauce

Dado que el tiempo de concentración depende de la longitud y pendiente del cauce escogido, deben tantearse diferentes cauces o recorridos del

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18902

agua, incluyendo siempre en los tanteos los de mayor longitud y menor pendiente. El cauce (o recorrido) que debe escogerse es aquél que da lugar a un valor mayor del tiempo de concentración t_c .

En aquellas cuencas principales de pequeño tamaño en las que el tiempo de recorrido en flujo difuso sobre el terreno sea apreciable respecto al tiempo de recorrido total no será de aplicación la fórmula anterior, debiendo aplicarse las indicaciones que se proporcionan a continuación para cuencas secundarias. Se considera que se produce esta circunstancia cuando el tiempo de concentración calculado mediante la fórmula anterior sea inferior a cero coma veinticinco horas ($t_c \le 0.25h$).

- Para cuencas secundarias (apartado 1.4), el tiempo de concentración se debe determinar dividiendo el recorrido de la escorrentía en tramos de característica homogéneas inferiores a trescientos metros de longitud (300 m) y sumando los tiempos parciales obtenidos, distinguiendo entre:
 - Flujo canalizado a través de cunetas u otros elementos de drenaje: se puede considerar régimen uniforme y aplicar la ecuación de Manning (capítulo 3).
 - o Flujo difuso sobre el terreno:

$$t_{dif} = 2 \cdot L_{dif}^{-0,408} \cdot n_{dif}^{-0,312} \cdot J_{dif}^{-0,209}$$

donde:

 t_{dif} (minutos) Tiempo de recorrido en flujo difuso sobre el terreno. n_{dif} (adimensional) Coeficiente de flujo difuso (tabla 2.1). L_{dif} (m) Longitud de recorrido en flujo difuso J_{dif} (adimensional) Pendiente media

TABLA 2.1.- VALORES DEL COEFICIENTE DE FLUJO DIFUSO ndif

Cobertura del terreno					
Pavimentado o revestido					
	Sin vegetación	0,050			
No pavimentado ni revestido	Con vegetación escasa	0,120			
No pavimentado ni revestido	Con vegetación media	0,320			
	Con vegetación densa	1,000			

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18903

El valor del tiempo de concentración t_c , a considerar se obtiene de la tabla 2.2:

TABLA 2.2.- DETERMINACIÓN DE t_c EN CONDICIONES DE FLUJO DIFUSO

t _{dif} (minutos)	t_C (minutos)
≤ 5	5
5 ≤ <i>t</i> _{dif} ≤ 40	t_{dif}
≥ 40	40

2.2.3 COEFICIENTE DE ESCORRENTÍA

2.2.3.1 Fórmula de cálculo

El coeficiente de escorrentía C, define la parte de la precipitación de intensidad $I(T, t_c)$ que genera el caudal de avenida en el punto de desagüe de la cuenca.

El coeficiente de escorrentía C, se obtendrá mediante la siguiente formula, representada gráficamente en la figura 2.6

Si
$$P_d \cdot K_A > P_0$$

$$C = \frac{\left(\frac{P_d \cdot K_A}{P_0} - 1\right) \left(\frac{P_d \cdot K_A}{P_0} + 23\right)}{\left(\frac{P_d \cdot K_A}{P_0} + 11\right)^2}$$
 Si $P_d \cdot K_A \le P_0$
$$C = 0$$

donde:

C (adimensional) Coeficiente de escorrentía

P_d (mm) Precipitación diaria correspondiente al período de re-

torno T considerado (epígrafe 2.2.2.2).

 K_A (adimensional) Factor reductor de la precipitación por área de la

cuenca (epígrafe 2.2.2.3).

 P_{θ} (mm) Umbral de escorrentía (epígrafe 2.2.3.2).

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18904

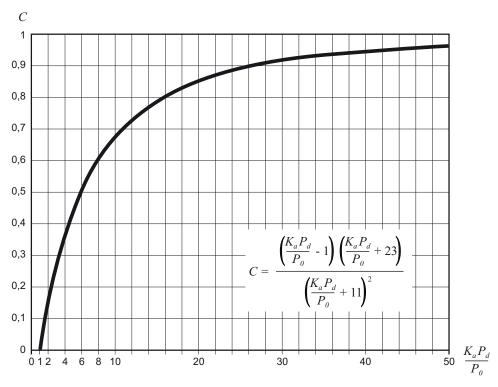


FIGURA 2.6.- DETERMINACIÓN DEL COEFICIENTE DE ESCORRENTÍA

2.2.3.2 Umbral de escorrentía

El umbral de escorrentía P_{θ} , representa la precipitación mínima que debe caer sobre la cuenca para que se inicie la generación de escorrentía. Se determinará mediante la siguiente fórmula:

$$P_0 = P_0^i \cdot \beta$$

donde:

 P_{θ} (mm) Umbral de escorrentía

 P_0^i (mm) Valor inicial del umbral de escorrentía (epígrafe 2.2.3.3).

b (adimensional) Coeficiente corrector del umbral de escorrentía (epígrafe 2.2.3.4)

2.2.3.3 Valor inicial del umbral de escorrentía

El valor inicial del umbral de escorrentía P_{θ} , se determinará como se refiere a continuación, a partir de:

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18905

- Series de datos o mapas publicados por la Dirección General de Carreteras, en los que se obtenga directamente el valor de Pθⁱ para una determinada localización geográfica. Normalmente, dicho valor en cada punto se obtendrá como promedio en la cuenca vertiente al punto de cálculo de una determinada discretización espacial llevada a cabo sobre el territorio.
- Tabla 2.3, en las siguientes circunstancias:
 - Cuando la información referida en el párrafo precedente no se encuentre disponible.
 - Cuando el tamaño de la cuenca sea similar (o inferior) al tamaño de la discretización espacial efectuada.
 - o En problemas específicos de escorrentía urbana.
 - o Para la definición del drenaje de plataforma y márgenes
 - Cuando se tenga constancia de cambios de uso del suelo con posterioridad a la elaboración de las series de datos o mapas a que se hace referencia en el párrafo anterior.
 - Para la realización de cálculos en que se supongan modificaciones de los usos del suelo, respecto a lo reflejado en las mencionadas series de datos o mapas.

La determinación de los grupos hidrológicos de suelo presentes en la cuenca se debe realizar a partir del mapa de la figura 2.7. Cuando se disponga de información más detallada, en el proyecto se puede justificar el cambio del grupo hidrológico de suelo en alguna cuenca concreta, según los criterios de la tabla 2.4 y la figura 2.8.

Cuando se considere oportuno, se pueden diferenciar las proporciones de los distintos tipos y usos del suelo existentes en la cuenca, atribuyendo a cada uno el valor correspondiente de P_{θ}^{i} (epígrafe 2.2.4) que se indica en la tabla 2.3.

Sec. I. Pág. 18906 Núm. 60 Jueves 10 de marzo de 2016

TABLA 2.3.- VALOR INICIAL DEL UMBRAL DE ESCORRENTÍA P_0^i (mm)

		Práctica	Pendiente	Grupo de suelo			
Código	Uso de suelo	de cultivo	(%)	Α	В	С	D
11100	Tejido urbano continuo			1	1	1	1
11200	Tejido urbano discontinuo			24	14	8	6
11200	Urbanizaciones			24	14	8	6
11210	Estructura urbana abierta			24	14	8	6
11220	Urbanizaciones exentas y/o ajardinadas			24	14	8	6
12100	Zonas industriales y comerciales			6	4	3	3
12100	Granjas agrícolas			24	14	8	6
12110	Zonas industriales			12	7	5	4
12120	Grandes superficies de equipamiento y servicios			6	4	3	3
12200	Redes viarias, ferroviarias y terrenos asociados			1	1	1	1
12210	Autopistas, autovías y terrenos asociados			1	1	1	1
12220	Complejos ferroviarios			12	7	5	4
12300	Zonas portuarias			1	1	1	1
12400	Aeropuertos			24	14	8	6
13100	Zonas de extracción minera			16	9	6	5
13200	Escombreras y vertederos			20	11	8	6
13300	Zonas de construcción			24	14	8	6
14100	Zonas verdes urbanas			53	23	14	10
14200	Instalaciones deportivas y recreativas			79	32	18	13
14210	Campos de golf			79	32	18	13
14220	Resto de instalaciones deportivas y recreativas			53	23	14	10
21100	Tierras de labor en secano (cereales)	R	≥ 3	29	17	10	8
21100	Tierras de labor en secano (cereales)	N	≥ 3	32	19	12	10
21100	Tierras de labor en secano (cereales)	R/N	< 3	34	21	14	12
21100	Tierras de labor en secano (viveros)			0	0	0	0
21100	Tierras de labor en secano (hortalizas)	R	≥3	23	13	8	6
21100	Tierras de labor en secano (hortalizas)	N	≥ 3	25	16	11	8
21100	Tierras de labor en secano (hortalizas)	R/N	< 3	29	19	14	11
21100	Tierras abandonadas		≥3	16	10	7	5
21100	Tierras abandonadas		< 3	20	14	11	8
21200	Terrenos regados permanentemente	R	≥ 3	37	20	12	9
21200	Terrenos regados permanentemente	N	≥ 3	42	23	14	11
21200	Terrenos regados permanentemente	R/N	< 3	47	25	16	13
21210	Cultivos herbáceos en regadío	R	≥3	37	20	12	9
21210	Cultivos herbáceos en regadío	N	≥3	42	23	14	11
21210	Cultivos herbáceos en regadío	R/N	< 3	47	25	16	13
21220	Otras zonas de irrigación			0	0	0	0
21300	Arrozales			47	25	16	13
22100	Viñedos		≥3	62	28	15	10
22100	Viñedos		< 3	75	34	19	14
22110	Viñedos en secano		≥3	62	28	15	10

BOLETÍN OFICIAL DEL ESTADO

Jueves 10 de marzo de 2016

Sec. I. Pág. 18907

		Práctica	D di t .	(Grupo de	suelo	
Código	Uso de suelo	de cultivo	Pendiente (%)	Α	В	С	D
22110	Viñedos en secano		< 3	75	34	19	14
22120	Viñedos en regadío		≥3	62	28	15	10
22120	Viñedos en regadío		< 3	75	34	19	14
22200	Frutales y plantaciones de bayas		≥ 3	80	34	19	14
22200	Frutales y plantaciones de bayas		< 3	95	42	22	15
22210	Frutales en secano		≥ 3	62	28	15	10
22210	Frutales en secano		< 3	75	34	19	14
22220	Frutales en regadío		≥3	80	34	19	14
22220	Frutales en regadío		< 3	95	42	22	15
22221	Cítricos		≥ 3	80	34	19	14
22221	Cítricos		< 3	95	42	22	15
22222	Frutales tropicales		≥ 3	80	34	19	14
22222	Frutales tropicales		< 3	95	42	22	15
22223	Otros frutales en regadío		≥ 3	80	34	19	14
22223	Otros frutales en regadío		< 3	95	42	22	15
22300	Olivares		≥3	62	28	15	10
22300	Olivares		< 3	75	34	19	14
22310	Olivares en secano		≥3	62	28	15	10
22310	Olivares en secano		< 3	75	34	19	14
22320	Olivares en regadío		≥3	62	28	15	10
22320	Olivares en regadío		< 3	75	34	19	14
23100	Prados y praderas		≥3	70	33	18	13
23100	Prados y praderas		< 3	120	55	22	14
23100	Pastos en tierras abandonadas		≥3	24	14	8	6
23100	Pastos en tierras abandonadas		< 3	58	25	12	7
23100	Prados arbolados		≥3	70	33	18	13
23100	Prados arbolados		< 3	120	55	22	14
24110	Cultivos anuales asociados con cultivos permanentes en secano		≥ 3	39	20	12	8
24110	Cultivos anuales asociados con cultivos permanentes en secano		< 3	66	29	15	10
24120	Cultivos anuales asociados con cultivos permanentes en regadío		≥ 3	75	33	18	14
24120	Cultivos anuales asociados con cultivos perma- nentes en regadío		< 3	106	48	22	15
24211	Mosaico de cultivos anuales con prados o praderas en secano	R	≥ 3	26	15	9	6
24211	Mosaico de cultivos anuales con prados o praderas en secano	N	≥ 3	28	17	11	8
24211	Mosaico de cultivos anuales con prados o praderas en secano	R/N	< 3	30	19	13	10
24212	Mosaico de cultivos permanentes en secano		≥ 3	62	28	15	10
24212	Mosaico de cultivos permanentes en secano		< 3	75	34	19	14
24213	Mosaico de cultivos anuales con cultivos permanentes en secano		≥ 3	39	20	12	8
24213	Mosaico de cultivos anuales con cultivos permanentes en secano		< 3	66	29	15	10

BOLETÍN OFICIAL DEL ESTADO

Jueves 10 de marzo de 2016

Sec. I. Pág. 18908

		Práctica	5	(Grupo de	suelo	
Código	Uso de suelo	de cultivo	Pendiente (%)	Α	В	С	D
24221	Mosaico de cultivos anuales con prados o praderas en regadío	R	≥ 3	37	20	12	9
24221	Mosaico de cultivos anuales con prados o praderas en regadío	N	≥ 3	42	23	14	11
24221	Mosaico de cultivos anuales con prados o praderas en regadío	R/N	< 3	47	25	16	13
24222	Mosaico de cultivos permanentes en regadío		≥3	80	34	19	14
24222	Mosaico de cultivos permanentes en regadío		< 3	95	42	22	15
24223	Mosaico de cultivos anuales con cultivos permanentes en regadío		≥ 3	75	33	18	14
24223	Mosaico de cultivos anuales con cultivos permanentes en regadío		< 3	106	48	22	15
24230	Mosaico de cultivos mixtos en secano y regadío	R	≥ 3	31	17	10	8
24230	Mosaico de cultivos mixtos en secano y regadío	N	≥3	34	20	13	10
24230	Mosaico de cultivos mixtos en secano y regadío	R/N	< 3	37	22	14	11
24310	Mosaico de cultivos agrícolas en secano con espacios significativos de vegetación natural y seminatural	R	≥ 3	26	15	9	6
24310	Mosaico de cultivos agrícolas en secano con es- pacios significativos de vegetación natural y se- minatural	N	≥ 3	28	17	11	8
24310	Mosaico de cultivos agrícolas en secano con es- pacios significativos de vegetación natural y se- minatural	R/N	< 3	30	19	13	10
24320	Mosaico de cultivos agrícolas en regadío con espacios significativos de vegetación natural y seminatural	R	≥ 3	37	20	12	9
24320	Mosaico de cultivos agrícolas en regadío con espacios significativos de vegetación natural y seminatural	N	≥ 3	42	23	14	11
24320	Mosaico de cultivos agrícolas en regadío con espacios significativos de vegetación natural y seminatural	R/N	< 3	47	25	16	13
24330	Mosaico de prados o praderas con espacios sig- nificativos de vegetación natural y seminatural		≥ 3	70	33	18	13
24330	Mosaico de prados o praderas con espacios sig- nificativos de vegetación natural y seminatural		< 3	120	55	22	14
24400	Sistemas agroforestales		≥ 3	53	23	14	9
24400	Sistemas agroforestales		< 3	80	35	17	10
24410	Pastizales, prados o praderas con arbolado adehesado		≥ 3	53	23	14	9
24410	Pastizales, prados o praderas con arbolado adehesado		< 3	80	35	17	10
24420	Cultivos agrícolas con arbolado adehesado		≥ 3	53	23	14	9
24420	Cultivos agrícolas con arbolado adehesado		< 3	80	35	17	10
31100	Frondosas			90	47	31	23
31110	Perennifolias			90	47	31	23
31120	Caducifolias y marcescentes			90	47	31	23
31130	Otras frondosas de plantación		≥3	79	34	19	14
31130	Otras frondosas de plantación		< 3	94	42	22	15
31140	Mezclas de frondosas			90	47	31	23

BOLETÍN OFICIAL DEL ESTADO

Jueves 10 de marzo de 2016

Sec. I. Pág. 18909

		Práctica	Pendiente	(Grupo de	suelo	
Código	Uso de suelo	de cultivo	(%)	Α	В	С	D
31150	Bosques de ribera			76	34	22	16
31160	Laurisilva macaronésica			90	47	31	23
31200	Bosques de coníferas			90	47	31	23
31210	Bosques de coníferas de hojas aciculares			90	47	31	23
31220	Bosques de coníferas de hojas tipo cupresáceo			90	47	31	23
31300	Bosque mixto			90	47	31	23
32100	Pastizales naturales		≥3	53	23	14	9
32100	Pastizales naturales		< 3	80	35	17	10
32100	Prados alpinos		≥ 3	70	33	18	13
32100	Prados alpinos		< 3	120	55	22	14
32100	Formaciones herbáceas de llanuras aluviales inundadas y llanuras costeras, tierras bajas		≥ 3	70	33	18	13
32100	Formaciones herbáceas de llanuras aluviales inundadas y llanuras costeras, tierras bajas		< 3	120	55	22	14
32110	Pastizales supraforestales		≥3	70	33	18	13
32110	Pastizales supraforestales		< 3	120	55	22	14
32111	Pastizales supraforestales templado-oceánicos, pirenaicos y orocantábricos		≥3	70	33	18	13
32111	Pastizales supraforestales templado-oceánicos, pirenaicos y orocantábricos		< 3	120	55	22	14
32112	Pastizales supraforestales mediterráneos		≥3	24	14	8	6
32112	Pastizales supraforestales mediterráneos		< 3	57	25	12	7
32121	Otros pastizales templado oceánicos		≥3	53	23	14	9
32121	Otros pastizales templado oceánicos		< 3	79	35	17	10
32122	Otros pastizales mediterráneos		≥ 3	24	14	8	6
32122	Otros pastizales mediterráneos		< 3	57	25	12	7
32200	Landas y matorrales mesófilas			76	34	22	16
32210	Landas y matorrales en climas húmedos. Vegetación mesófila			76	34	22	16
32220	Fayal-brezal macaronésico			60	24	14	10
32300	Vegetación esclerófila			60	24	14	10
32311	Grandes formaciones de matorral denso o medianamente denso			75	34	22	16
32312	Matorrales subarbustivos o arbustivos muy poco densos			60	24	14	10
32320	Matorrales xerófilos macaronésicos			40	17	8	5
32400	Matorral boscoso de transición			75	34	22	16
32400	Claras de bosques			40	17	8	5
32400	Zonas empantanadas fijas o en transición			60	24	14	10
32410	Matorral boscoso de frondosas			75	34	22	16
32420	Matorral boscoso de coníferas			75	34	22	16
32430	Matorral boscoso de bosque mixto			75	34	22	16
33110	Playas y dunas			152	152	152	152
33120	Ramblas con poca o sin vegetación			15	8	6	4
33200	Roquedo			2	2	2	2
33210	Rocas desnudas con fuerte pendiente			2	2	2	2

BOLETÍN OFICIAL DEL ESTADO

Jueves 10 de marzo de 2016

Sec. I. Pág. 18910

.		Práctica	Pendiente	Grupo de suelo			
Código	Uso de suelo	de cultivo	(%)		В	С	D
33220	Afloramientos rocosos y canchales		≥ 3	2	2	2	2
33220	Afloramientos rocosos y canchales		< 3	4	4	4	4
33230	Coladas lávicas cuaternarias		≥ 3	3	3	3	3
33230	Coladas lávicas cuaternarias		< 3	5	5	5	5
33300	Espacios con vegetación escasa		≥3	24	14	8	6
33300	Espacios con vegetación escasa		< 3	58	25	12	7
33310	Xeroestepa subdesértica		≥3	24	14	8	6
33310	Xeroestepa subdesértica		< 3	58	25	12	7
33320	Cárcavas y/o zonas en proceso de erosión			15	8	6	4
33330	Espacios orófilos altitudinales con vegetación escasa		≥ 3	24	14	8	6
33330	Espacios orófilos altitudinales con vegetación escasa		< 3	58	25	12	7
33400	Zonas quemadas			15	8	6	4
33500	Glaciares y nieves permanentes			0	0	0	0
41100	Humedales y zonas pantanosas			2	2	2	2
41200	Turberas y prados turbosos			248	99	25	16
42100	Marismas			2	2	2	2
42200	Salinas			5	5	5	5
42300	Zonas Ilanas intermareales			0	0	0	0
51100	Cursos de agua			0	0	0	0
51110	Ríos y cauces naturales			0	0	0	0
51120	Canales artificiales			0	0	0	0
51210	Lagos y lagunas			0	0	0	0
51210	Lagos y lagunas (almacenamiento de agua)			0	0	0	0
51120	Embalses			0	0	0	0
51120	Embalses (almacenamiento de agua)			0	0	0	0
52100	Lagunas costeras			0	0	0	0
52200	Estuarios			0	0	0	0
52300	Mares y océanos			0	0	0	0

Notas:

La codificación de los tipos del suelo corresponde al proyecto europeo Corine Land Cover 2000

- N: Denota cultivo según las curvas de nivel.
- R: Denota cultivo según la línea de máxima pendiente.

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18911

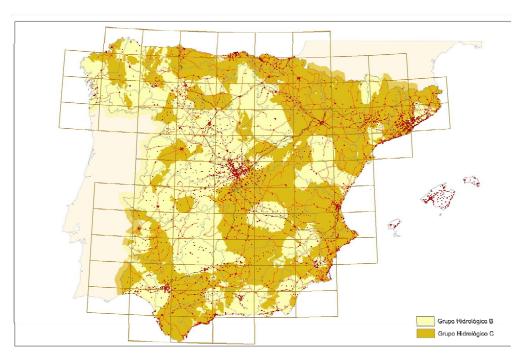


FIGURA 2.7.- MAPA DE GRUPOS HIDROLÓGICOS DE SUELO

TABLA 2.4.- GRUPOS HIDROLÓGICOS DE SUELO A EFECTOS DE LA DE-TERMINACIÓN DEL VALOR INICIAL DEL UMBRAL DE ESCORRENTÍA

Grupo	Infiltración (cuando están muy húmedos)	Potencia	Textura	Drenaje
Α	Rápida	Grande	Arenosa Areno-limosa	Perfecto
В	Moderada	Media a grande	Franco-arenosa Franca Franco-arcillosa- arenosa Franco-limosa	Bueno a moderado
С	Lenta	Media a pequeña	Franco-arcillosa Franco-arcillo-li- mosa Arcillo-arenosa	Imperfecto
D	Muy lenta	Pequeño (litosuelo) u horizontes de ar- cilla	Arcillosa	Pobre o muy pobre

Nota: Los terrenos con nivel freático alto se incluirán en el Grupo D.

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18912

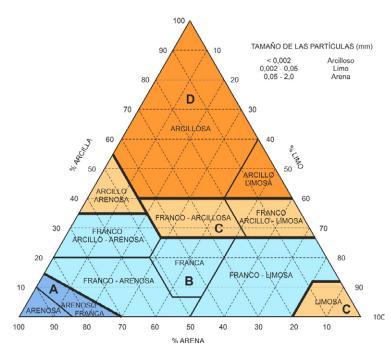


FIGURA 2.8.- DIAGRAMA TRIANGULAR PARA DETERMINACIÓN DE LA TEXTURA EN MATERIALES TIPO SUELO

2.2.3.4 Coeficiente corrector del umbral de escorrentía

La formulación del método racional efectuada en los epígrafes precedentes requiere una calibración con datos reales de las cuencas, que se introduce en el método a través de un coeficiente corrector del umbral de escorrentía b.

Se pueden distinguir los siguientes casos, en función de los datos disponibles:

- Cuando se disponga de una calibración específica para una cuenca concreta, el valor del coeficiente corrector a aplicar es, directamente, el obtenido en ella.
- Cuando se disponga de datos sobre caudales suficientemente representativos para una cuenca concreta o cuencas próximas similares, se debe efectuar una calibración por comparación entre datos reales y resultados del
 método racional, de tal forma que los caudales correspondientes a distintos
 períodos de retorno obtenidos a partir del análisis estadístico de los datos
 de caudal, coincidan sensiblemente con los obtenidos mediante la aplicación del método.
- Cuando no se disponga de información suficiente en la propia cuenca de cálculo o en cuencas próximas similares, para llevar a cabo la calibración, se puede tomar el valor del coeficiente corrector a partir de los datos de la tabla 2.5, correspondientes a las regiones de la figura 2.9.

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 189

En este último caso, se debe proceder como se indica a continuación:

- En las cuencas del Levante y Sureste peninsular se debe estar a lo especificado en el apartado 2.3
- En el resto de las cuencas se debe proceder como sigue, atendiendo al tipo de obra de que en cada caso se trate:
 - Drenaje transversal de vías de servicio, ramales, caminos, accesos a instalaciones y edificaciones auxiliares de la carretera y otros elementos anejos (siempre que el funcionamiento hidráulico de estas obras no afecte a la carretera principal) y drenaje de plataforma y márgenes: Se debe aplicar el producto del valor medio de la región del coeficiente corrector del umbral de escorrentía por un factor dependiente del período de retorno T, considerado para el caudal de proyecto en el elemento de que en cada caso se trate:

$$\beta^{PM} = \beta_m \cdot F_T$$

o Drenaje transversal de la carretera (puentes y obras de drenaje transversal): producto del valor medio de la región del coeficiente corrector del umbral de escorrentía corregido por el valor correspondiente al intervalo de confianza del cincuenta por ciento, por un factor dependiente del período de retorno T considerado para el caudal de proyecto, es decir:

$$\beta^{DT} = (\beta_m - \Delta_{50}) \cdot F_T$$

donde:

 b^{PM} (adimensional) Coeficiente corrector del umbral de escorrentía para drenaje de plataforma y márgenes, o drenaje transversal de vías auxiliares b^{DT} (adimensional) Coeficiente corrector del umbral de escorrentía para drenaje transversal de la carretera (adimensional) Valor medio en la región, del coeficiente b_m corrector del umbral de escorrentía (tabla 2.5)

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18914

 F_T (adimensional) Factor función del período de retorno T

(tabla 2.5)

Desviación respecto al valor medio: in-

tervalo de confianza correspondiente al

cincuenta por ciento (50 %)

En el proyecto se puede justificar la conveniencia de adoptar, en algún caso concreto, un intervalo de confianza superior al definido con carácter general en los párrafos precedentes.

FIGURA 2.9.- REGIONES CONSIDERADAS PARA LA CARACTERIZACIÓN DEL COEFICIENTE CORRECTOR DEL UMBRAL DE ESCORRENTÍA

Sec. I. Pág. 189 Núm. 60 Jueves 10 de marzo de 2016

TABLA 2.5.- COEFICIENTE CORRECTOR DEL UMBRAL DE ESCORRENTÍA: VALORES CORRESPONDIENTES A CALIBRACIONES REGIONALES

Valor valor medio para el in- Desviación respecto al valor medio para el in- Período de retorno T (años), F_T							F _T		
Región	medio,	tervalo						. ,,	
	β_m	50%	67%	90%	2 5 25 100				
11	0.00	Δ50	Δ_{67}	Δg_0	0.80	0.00	1 12	1 24	1.50
11	0,90	0,20	0,30	0,50	0,80	0,90	1,13	1,34	1,59
12	0,95	0,20	0,25	0,45	0,75	0,90	1,14	1,33	1,56
13	0,60	0,15	0,25	0,40	0,74	0,90	1,15	1,34	1,55
21	1,20	0,20	0,35	0,55	0,74	0,88	1,18	1,47	1,90
22	1,50	0,15	0,20	0,35	0,74	0,90	1,12	1,27	1,37
23	0,70	0,20	0,35	0,55	0,77	0,89	1,15	1,44	1,82
24	1,10	0,15	0,20	0,35	0,76	0,90	1,14	1,36	1,63
25	0,60	0,15	0,20	0,35	0,82	0,92	1,12	1,29	1,48
31	0,90	0,20	0,30	0,50	0,87	0,93	1,10	1,26	1,45
32	1,00	0,20	0,30	0,50	0,82	0,91	1,12	1,31	1,54
33	2,15	0,25	0,40	0,65	0,70	0,88	1,15	1,38	1,62
41	1,20	0,20	0,25	0,45	0,91	0,96	1,00	1,00	1,00
42	2,25	0,20	0,35	0,55	0,67	0,86	1,18	1,46	1,78
511	2,15	0,10	0,15	0,20	0,81	0,91	1,12	1,30	1,50
512	0,70	0,20	0,30	0,50	1,00	1,00	1,00	1,00	1,00
52	0,95	0,20	0,25	0,45	0,89	0,94	1,09	1,22	1,36
53	2,10	0,25	0,35	0,60	0,68	0,87	1,16	1,38	1,56
61	2,00	0,25	0,35	0,60	0,77	0,91	1,10	1,18	1,17
71	1,20	0,15	0,20	0,35	0,82	0,94	1,00	1,00	1,00
72	2,10	0,30	0,45	0,70	0,67	0,86	1,00	-	-
81	1,30	0,25	0,35	0,60	0,76	0,90	1,14	1,34	1,58
821	1,30	0,35	0,50	0,85	0,82	0,91	1,07	-	-
822	2,40	0,25	0,35	0,60	0,70	0,86	1,16	-	-
83	2,30	0,15	0,25	0,40	0,63	0,85	1,21	1,51	1,85
91	0,85	0,15	0,25	0,40	0,72	0,88	1,19	1,52	1,95
92	1,45	0,30	0,40	0,70	0,82	0,94	1,00	1,00	1,00
93	1,70	0,20	0,25	0,45	0,77	0,92	1,00	1,00	1,00
941	1,80	0,15	0,20	0,35	0,68	0,87	1,17	1,39	1,64
942	1,20	0,15	0,25	0,40	0,77	0,91	1,11	1,24	1,32
951	1,70	0,30	0,40	0,70	0,72	0,88	1,17	1,43	1,78
952	0,85	0,15	0,25	0,40	0,77	0,90	1,13	1,32	1,54
101	1,75	0,30	0,40	0,70	0,76	0,90	1,12	1,27	1,39
1021	1,45	0,15	0,25	0,40	0,79	0,93	1,00	1,00	1,00
1022	2,05	0,15	0,25	0,40	0,79	0,93	1,00	1,00	1,00
		adontará		· ·	a los de la r	· ·	·		

En Ceuta y Melilla se adoptarán valores similares a los de la región 61. Pueden obtenerse valores intermedios por interpolación adecuada a partir de los datos de esta tabla En todos los casos F_{10} =1,00

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 189

2.2.4 ÁREA DE LA CUENCA

A los efectos de esta norma se considera como área de la cuenca *A*, la superficie medida en proyección horizontal (planta) que drena al punto de desagüe (figura 2.2).

El método de cálculo expuesto en los apartados anteriores supone unos valores únicos de la intensidad de precipitación y del coeficiente de escorrentía para toda la cuenca, correspondientes a sus valores medios. Esta hipótesis sólo es aceptable en cuencas que sean suficientemente homogéneas, tanto respecto de la variación espacial de la precipitación como del coeficiente de escorrentía.

El caso más general, de cuencas heterogéneas, se debe resolver mediante su división en áreas parciales de superficie A_i , que puedan considerarse homogéneas respecto a los factores señalados, cuyos coeficientes de escorrentía C_i , e intensidades de precipitación $I(T, t_c)_i$, se calculan por separado. El caudal de proyecto se determinará sustituyendo en la fórmula general de cálculo (epígrafe 2.2.1) el producto de los tres factores por la correspondiente sumatoria de productos relativa a cada una de las áreas parciales, es decir:

$$Q_T = \frac{K_t}{3.6} \cdot \sum_{i} \left[I(T, t_c)_i \cdot C_i \cdot A_i \right]$$

En los casos más habituales, dado el pequeño tamaño de las cuencas a las que resulta de aplicación este método de cálculo, la causa de la heterogeneidad se debe a la variación espacial del coeficiente de escorrentía y no tanto de la intensidad de precipitación. En tales circunstancias se considera razonable adoptar un valor medio areal para la intensidad de precipitación en la cuenca $I(T, t_c)$ por lo que la expresión anterior resulta:

$$Q_T = \frac{K_t}{3.6} \cdot I(T, t_c) \cdot \sum_i [C_i \cdot A_i]$$

2.2.5 COEFICIENTE DE UNIFORMIDAD EN LA DISTRIBUCIÓN TEMPORAL DE LA PRECIPITA-CIÓN

El coeficiente K_t tiene en cuenta la falta de uniformidad en la distribución temporal de la precipitación. Se obtendrá a través de la siguiente expresión:

Núm. 60 Jueves 10 de marzo de 2016

Sec. I. Pág. 18917

$$K_t = 1 + \frac{t_c^{1,25}}{t_c^{1,25} + 14}$$

donde:

 K_t (adimensional) Coeficiente de uniformidad en la distribución temporal de la precipitación.

 t_c (horas) Tiempo de concentración de la cuenca (epígrafe 2.2.2.5)

2.3 Método de cálculo para las cuencas pequeñas del Levante y Sureste peninsular

De conformidad con lo especificado en el apartado 2.1, en cuencas de área inferior a cincuenta kilómetros cuadrados ($A < 50 \text{ km}^2$) del Levante y Sureste peninsular (regiones 72, 821 y 822 de la figura 2.9), si la Administración Hidráulica no dispone de datos sobre caudales máximos, se debe aplicar el siguiente método:

- Si el período de retorno es inferior a o igual a veinticinco años (T ≤ 25 años) el caudal máximo anual correspondiente QT, se debe determinar según el método racional (apartado 2.2).
- Si el período de retorno es superior a veinticinco años (T > 25 años) el caudal máximo anual correspondiente QT, se debe determinar como se indica a continuación:
 - A partir de un estudio específico, mediante métodos estadísticos o modelos hidrológicos, que tenga en cuenta la información sobre avenidas históricas o grandes eventos de precipitación, en la zona de estudio o en zonas próximas similares suficientemente representativas, bien para determinar directamente los caudales o bien para calibrar el modelo hidrológico.
 - Si no se efectúa el análisis anterior se utilizará el siguiente modelo regional que proporciona valores aproximados y generalmente conservadores:

$$Q_T = \varphi \cdot Q_{10}^{\lambda}$$

Núm. 60 Jueves 10 de marzo de 2016 Sec. I. Pág. 18918

donde:

 Q_T (m³/s) Caudal máximo anual correspondiente al pe-

ríodo de retorno T , en el punto de desagüe

de la cuenca (figura 2.2).

 Q_{10} (m³/s) Caudal máximo anual correspondiente al pe-

ríodo de retorno de diez años en el punto de desagüe de la cuenca, calculado mediante el

método racional (apartado 2.2.2.2).

Salvo justificación del proyecto, el valor del

coeficiente corrector del umbral de escorrentía a adoptar en el cálculo se debe corres-

tia a adoptai en el calculo se debe cones-

ponder con el valor medio β_m recogido en la tabla 2.5, sin efectuar correcciones asocia-

das al nivel de confianza del ajuste estadís-

tico utilizado.

 ϕ (adimensional) Coeficiente propio de la región y del período

de retorno considerado (tabla 2.6)

λ (adimensional) Exponente propio de la región y del período

de retorno considerado (tabla 2.6)

TABLA 2.6.- PARÁMETROS PARA EL CÁLCULO EN CUENCAS PEQUEÑAS

DEL LEVANTE Y SURESTE PENINSULAR (T > 25 años)

	Región 72									
Período de re- torno, <i>T (años)</i> 50 100 200 500										
φ	1,4057	3,0570	4,7152	6,9135						
λ	1,2953	1,2751	1,2678	1,2631						
	Regio	nes 821 y 822								
Período de re-	50	100	200	500						
torno, T (años)	•									
φ	11,1378	51,6297	86,5765	131,7650						
λ	0,7401	0,6065	0,5982	0,5953						